We study two distinct, but overlapping, networks that operate at the sametime, space, and frequency. The first network consists of $n$ randomlydistributed \emph{primary users}, which form either an ad hoc network, or aninfrastructure-supported ad hoc network with $l$ additional base stations. Thesecond network consists of $m$ randomly distributed, ad hoc secondary users orcognitive users. The primary users have priority access to the spectrum and donot need to change their communication protocol in the presence of secondaryusers. The secondary users, however, need to adjust their protocol based onknowledge about the locations of the primary nodes to bring little loss to theprimary network's throughput. By introducing preservation regions aroundprimary receivers and avoidance regions around primary base stations, wepropose two modified multihop routing protocols for the cognitive users. Baseon percolation theory, we show that when the secondary network is denser thanthe primary network, both networks can simultaneously achieve the samethroughput scaling law as a stand-alone network. Furthermore, the primarynetwork throughput is subject to only a vanishingly fractional loss.Specifically, for the ad hoc and the infrastructure-supported primary models,the primary network achieves sum throughputs of order $n^{1/2}$ and$\max\{n^{1/2},l\}$, respectively. For both primary network models, for any$\delta>0$, the secondary network can achieve sum throughput of order$m^{1/2-\delta}$ with an arbitrarily small fraction of outage. Thus, almost allsecondary source-destination pairs can communicate at a rate of order$m^{-1/2-\delta}$.
展开▼
机译:我们研究了两个不同但重叠的网络,它们在同一时间,空间和频率下运行。第一个网络由$ n $个随机分布的\ emph {primary users}组成,它们形成一个ad hoc网络或一个具有$ l $个额外基站的基础设施支持的ad hoc网络。第二个网络由$ m $个随机分布的临时二级用户或认知用户组成。主要用户具有对频谱的优先访问权,并且在存在次要用户的情况下无需更改其通信协议。然而,次要用户需要基于对主要节点的位置的了解来调整其协议,以使主要网络的吞吐量几乎没有损失。通过引入主要接收方周围的保留区域和主要基站周围的回避区域,我们为认知用户提出了两种改进的多跳路由协议。根据Baseon渗流理论,我们表明,当次要网络比主要网络密集时,两个网络都可以同时实现与独立网络相同的吞吐量缩放定律。此外,主网络的吞吐量仅遭受很小的损失。特别是,对于临时和基础架构支持的主模型,主网络实现的总吞吐量分别为$ n ^ {1/2} $和$ \ max \ {n ^ {1/2},l \} $。对于两个主网络模型,对于任何$ \ delta> 0 $,辅助网络都可以实现$ m ^ {1 / 2- \ delta} $的总吞吐量,而中断的比例很小。因此,几乎所有次要源-目的地对都可以以$ m ^ {-1 / 2- \ delta} $的速率进行通信。
展开▼